# **TRIDONIC**

# Driver LCA 25W 350-1050mA one4all SC PRE

Baureihe premium





Mit Zugentlastung



### Produktbeschreibung

- \_ NEU: lumDATA (DALI-2 Teil 251, 252 und 253)
- \_ Dimmbarer Konstantstrom-LED-Treiber für den Leuchteneinbau
- \_ Kann als Leuchteneinbau oder unabhängiger LED-Treiber mit aufschnappbarer Zugentlastung verwendet werden (siehe Zubehör)
- $_{
  m L}$  Dimmbereich von 1 100 %
- \_ Für Leuchten der Schutzklasse I und der Schutzklasse II
- \_ Ausgangsstrom einstellbar zwischen 350 1.050 mA mit ready2mains Programmer, I-SELECT 2 Plugs oder DALI
- \_ Max. Ausgangsleistung 25 W
- \_ Bis zu 90 % Effizienz
- \_ Leistungsaufnahme im Stand-by < 0,15 W
- \_ Nominale Lebensdauer bis zu 100.000 h
- \_ 5 Jahre Garantie (Bedingungen siehe

https://www.tridonic.com/herstellergarantiebedingungen)

### Gehäuse-Eigenschaften

- \_ Gehäuse: Polycarbonat, weif3
- \_ Schutzart IP20

# Schnittstellen

- \_ one4all (DALI-2 DT 6, DSI, switchDIM, corridorFUNCTION)
- \_ ready2mains (Konfigurieren und Dimmen über Netz)
- \_ Klemmen: 45° Steckklemmen

# **Funktionen**

- \_ Einstellbarer Ausgangsstrom in 1-mA-Schritten (DALI, ready2mains, I-SELECT 2)
- \_ Erfüllt die DALI-2 Teile: 251 (Leuchtendaten), 252 (Energiebericht) und 253 (Diagnose & Wartung)
- \_ Constant Light Output Funktion (CLO)
- \_ Power-up Fading bei AC
- \_ Konfigurieren über ready2mains
- \_ Ausschalten des Treibers mittels fade2zero
- \_ Servicemonitor protokolliert bestimmte Ereignisse
- Schutzfunktionen (Übertemperatur, Kurzschluss, Überlast, Leerlauf, Eingangsspannungsbereich, reduzierte Stoßstromverstärkung)
- \_ Geeignet für Sicherheitsbeleuchtungsanlagen gemäß EN 50172

# Vorteile

- \_ Anwendungsorientiertes Betriebsfenster für max. Kompatibilität
- Hohe Energieeinsparungen durch geringe Stand-by-Verluste und hohe Effizienz
- \_ Flexible Konfiguration über DALI, ready2mains und I-SELECT 2

# **Typische Anwendung**

\_ Für Linear- und Flächenbeleuchtung in Büroanwendungen

http://www.tridonic.com/28000675









Linear



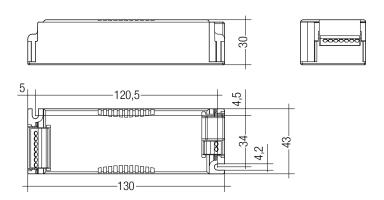
Fläche














# **TRIDONIC**

# Driver LCA 25W 350-1050mA one4all SC PRE

Baureihe premium



# <u>Bestelldaten</u>

| Тур                                                             | Artikelnummer          | Verpackung Karton | Verpackung Palette | Gewicht pro Stk. |
|-----------------------------------------------------------------|------------------------|-------------------|--------------------|------------------|
| LCA 25W 350-1050mA one4all SC PRE                               | 28000675               | 10 Stk.           | 1.000 Stk.         | 0,127 kg         |
|                                                                 |                        |                   |                    |                  |
| Fechnische Daten                                                |                        |                   |                    |                  |
| Netzspannungsbereich                                            | 220 – 240 V            |                   |                    |                  |
| Nechselspannungsbereich                                         | 198 – 264 V            |                   |                    |                  |
| Gleichspannungsbereich                                          | 176 – 280 V            |                   |                    |                  |
| Netzfrequenz                                                    | 0 / 50 / 60 Hz         |                   |                    |                  |
|                                                                 | 320 V AC, 48 h         |                   |                    |                  |
| Typ. Strom (bei 230 V, 50 Hz, Volllast) 🔍                       | 95,4 – 127,6 mA        |                   |                    |                  |
| Typ. Strom (220 V, 0 Hz, Volllast, 15 % Dimmlevel) <sup>®</sup> | 22,8 - 28,4 mA         |                   |                    |                  |
| Ableitstrom (bei 230 V, 50 Hz, Volllast) 👓                      | < 350 μA               |                   |                    |                  |
| Max. Eingangsleistung                                           | 28,7 W                 |                   |                    |                  |
| Typ. Wirkungsgrad (bei 230 V, 50 Hz, Volllast) <sup>©</sup>     | 90 %                   |                   |                    |                  |
| (bei 230 V, 50 Hz, Volllast)                                    | 0,96                   |                   |                    |                  |
| Typ. Leistungsaufnahme im Stand-by <sup>®</sup>                 | < 0,15 W               |                   |                    |                  |
| Гур. Eingangsstrom im Leerlauf                                  | 17,3 mA                |                   |                    |                  |
| Гур. Eingangsleistung im Leerlauf                               | 0,53 W                 |                   |                    |                  |
| Einschaltstrom (Spitze / Dauer)                                 | 26 A / 151 μs          |                   |                    |                  |
| THD (bei 230 V, 50 Hz, Volllast) <sup>①</sup>                   | < 8 %                  |                   |                    |                  |
| Startzeit (bei 230 V, 50 Hz, Volllast) <sup>①</sup>             | < 0,6 s                |                   |                    |                  |
| Startzeit (DC-Betrieb)                                          | < 0,33 s               |                   |                    |                  |
| Jmschaltzeit (AC/DC) <sup>④</sup>                               | < 0,33 s               |                   |                    |                  |
| Abschaltzeit (bei 230 V, 50 Hz, Volllast)                       | < 20 ms                |                   |                    |                  |
| Ausgangsstromtoleranz ®                                         | ± 3 %                  |                   |                    |                  |
| Max. Ausgangsstromspitze (nicht wiederkehrend)                  | ≤ Ausgangsstrom + 40 % |                   |                    |                  |
| Ausgangsstrom NF Restwelligkeit (< 120 Hz)                      | ± 2,5 %                |                   |                    |                  |
| Ausgang P_ST_LM (bei Volllast)                                  | ≤ 1                    |                   |                    |                  |
| Ausgang SVM (bei Volllast)                                      | ≤ 0,4                  |                   |                    |                  |
| Max. Ausgangsspannung (U-OUT)                                   | 60 V                   |                   |                    |                  |
| Dimmbereich                                                     | 1 – 100 %              |                   |                    |                  |
| Stoßspannungsfestigkeit (zwischen L - N)                        | 1 kV                   |                   |                    |                  |
| Stoßspannungsfestigkeit (zwischen L/N - PE)                     | 2 kV                   |                   |                    |                  |
| Stofsspannung ausgangsseitig (gegen PE)                         | < 0,5 kV               |                   |                    |                  |
| Schutzart                                                       | IP20                   |                   |                    |                  |
| Lebensdauer                                                     | bis zu 100.000 h       | ·                 |                    |                  |
| Garantie (Bedingungen siehe www.tridonic.com)                   | 5 Jahr(e)              |                   |                    |                  |
| Abmessungen L x B x H                                           | 130 x 43 x 30 mm       |                   |                    |                  |

# Prüfzeichen



### Normen

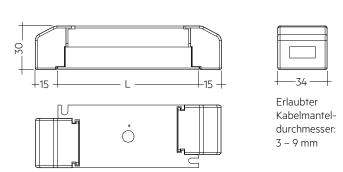
EN 55015, EN 61000-3-2, EN 61000-3-3, EN 61347-1, EN 61347-2-13, EN 62384, EN 61547, EN 62386-101, EN 62386-102, EN 62386-207 (DALI-2), gemäß EN 50172, gemäß EN 60598-2-22

Spezifische technische Daten

| qv                                | Ausgangsstrom <sup>®®</sup> | Min.<br>Ausgangsspannung | Max.<br>Ausgangsspannung | Max.<br>Ausgangsleistung | Typ.<br>Leistungsaufnahme<br>(bei 230 V, 50 Hz,<br>Volllast) | Typ. Stromaufnahme<br>(bei 230 V, 50 Hz,<br>Volllast) | tc Punkt max. | Umgebungstemperat<br>ur ta | ⊩SELECT 2<br>Widerstandswert <sup>©</sup> |
|-----------------------------------|-----------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------------------------|-------------------------------------------------------|---------------|----------------------------|-------------------------------------------|
| LCA 25W 350-1050mA one4all SC PRE | 350 mA                      | 20 V                     | 50 V                     | 17,5 W                   | 20,9 W                                                       | 94 mA                                                 | 75 °C         | -25 +55 °C                 | -                                         |
| LCA 25W 350-1050mA one4all SC PRE | 400 mA                      | 20 V                     | 50 V                     | 20,0 W                   | 23,5 W                                                       | 106 mA                                                | 75 °C         | -25 +55 °C                 | 12,50 kΩ                                  |
| LCA 25W 350-1050mA one4all SC PRE | 450 mA                      | 20 V                     | 50 V                     | 22,5 W                   | 26,1 W                                                       | 116 mA                                                | 75 °C         | -25 +55 °C                 | 11,11 kΩ                                  |
| LCA 25W 350-1050mA one4all SC PRE | 500 mA                      | 20 V                     | 50 V                     | 25,0 W                   | 28,7 W                                                       | 128 mA                                                | 75 °C         | -25 +55 °C                 | 10,00 kΩ                                  |
| LCA 25W 350-1050mA one4all SC PRE | 550 mA                      | 20 V                     | 45 V                     | 24,8 W                   | 28,4 W                                                       | 126 mA                                                | 75 °C         | -25 +55 °C                 | 9,09 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 600 mA                      | 20 V                     | 41 V                     | 24,6 W                   | 28,3 W                                                       | 126 mA                                                | 75 °C         | -25 +55 °C                 | 8,33 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 650 mA                      | 20 V                     | 38 V                     | 24,7 W                   | 28,2 W                                                       | 125 mA                                                | 75 °C         | -25 +60 °C                 | 7,69 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 700 mA                      | 20 V                     | 35 V                     | 24,5 W                   | 28,1 W                                                       | 125 mA                                                | 75 °C         | -25 +60 °C                 | 7,14 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 750 mA                      | 20 V                     | 33 V                     | 24,8 W                   | 28,1 W                                                       | 125 mA                                                | 75 °C         | -25 +60 °C                 | 6,67 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 800 mA                      | 20 V                     | 31 V                     | 24,8 W                   | 28,2 W                                                       | 125 mA                                                | 75 °C         | -25 +60 °C                 | 6,25 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 850 mA                      | 20 V                     | 29 V                     | 24,7 W                   | 28,2 W                                                       | 125 mA                                                | 75 °C         | -25 +60 °C                 | 5,88 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 900 mA                      | 20 V                     | 27 V                     | 24,3 W                   | 28,3 W                                                       | 126 mA                                                | 75 °C         | -25 +55 °C                 | 5,56 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 950 mA                      | 20 V                     | 26 V                     | 24,7 W                   | 28,4 W                                                       | 125 mA                                                | 75 °C         | -25 +55 °C                 | 5,26 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 1.000 mA                    | 20 V                     | 25 V                     | 25,0 W                   | 28,4 W                                                       | 126 mA                                                | 75 °C         | -25 +55 °C                 | 5,00 kΩ                                   |
| LCA 25W 350-1050mA one4all SC PRE | 1.050 mA                    | 20 V                     | 23 V                     | 24,2 W                   | 28,6 W                                                       | 126 mA                                                | 75 °C         | -25 +55 °C                 | 0,00 kΩ                                   |
|                                   |                             |                          |                          |                          |                                                              |                                                       |               |                            |                                           |

Gültig bei 100 % Dimmlevel.
 Abhängig vom eingestellten Ausgangsstrom.
 Abhängig vom DALI-Datenverkehr am Interface.
 Gültig bei sofortiger Änderung der Stromversorgungsart, ansonsten gilt die Startzeit.

⑤ Ausgangsstrom ist Mittelwert.


<sup>®</sup> Die Tabelle enthält eine Auswahl an Betriebspunkten, deckt aber nicht jeden Betriebspunkt ab. Der Ausgangsstrom kann innerhalb des Strombereiches in 1-mA-Schritten eingestellt werden.

 $<sup>\</sup>ensuremath{{\mathbb C}}$  Nicht kompatibel mit I-SELECT (Generation 1). Kalkulierter Widerstandswert.

# Zugentlastungsset 43x30mm

ubehör





### Produktbeschreibung

- \_ Optionales Zugentlastungsset für unabhängige Anwendung
- Erweitert den LED-Treiber in einen vollen Klasse II kompatiblen LED-Treiber (z. B. für Deckeninstallation)
- \_ Leichte und werkzeuglose Montage am LED-Treiber, schraubenlose Kabelklemmkanäle für lange Zugentlastung (30 x 43 x 30 mm)
- \_ Mit Schrauben für kurze Zugentlastung (15 x 34 x 30 mm)
- Gesamtlänge = Länge L (LED-Treiber) + 2 x 30 mm (lange Zugentlastung), 2 x 15 mm (kurze Zugentalstung) oder lange und kurze Zugentlastung beliebig kombinierbar
- \_ Standard SC (L = 30 mm) erhältlich als nicht-vormontiert und vormontiert (PA = pre-assembled)
- \_ Kurze SC (L = 15 mm) nur vormontiert erhältlich

### Website

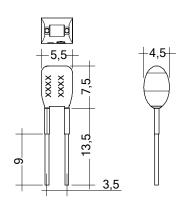
http://www.tridonic.com/28001168



### Bestelldaten

| Тур                               | Artikelnummer | Verpackung Karton <sup>®</sup> | Verpackung, Überkarton | Gewicht pro Stk. |
|-----------------------------------|---------------|--------------------------------|------------------------|------------------|
| ACU SC 43x30mm CLIP-ON SR SET     | 28001168      | 10 Stk.                        | 500 Stk.               | 0,038 kg         |
| ACU SC 43x30mm CLIP-ON SR SET 300 | 28001351      | 300 Stk.                       | 300 Stk.               | 0,038 kg         |
| ACU SC 30x43x30mm CLIP-ON SR PA   | 28001699      | 10 Stk.                        | 500 Stk.               | 0,021 kg         |
| ACU SC 15x43x30mm CLIP-ON SR PA   | 28001574      | 10 Stk.                        | 1.200 Stk.             | 0,010 kg         |

# Prüfzeichen




① 28001168: Ein Karton mit 10 Stk. entspricht 10 Sets zu je 2 Zugentlastungen. 28001351: Ein Karton mit 300 Stk. entspricht 300 Sets zu je 2 Zugentlastungen. 28001699 + 28001574: Ein Karton enthält genau 10 Stk. Zugentlastungen (keine Sets).

# I-SELECT 2 PLUG PRE / EXC







### Produktbeschreibung

- \_ Vorgefertigter Widerstand für Stromeinstellung
- \_ Kompatibel mit LED-Treiber mit I-select 2 Interface; nicht kompatibel mit I-SELECT (Generation 1)
- \_ Widerstand ist basisisoliert
- \_ Widerstandsleistung 0,25 W
- \_ Stromtoleranz ± 2 % zusätzlich zur Ausgangsstromtoleranz
- \_ Kompatibel mit LED-Treiber der Serien PRE und EXC

# Berechnungsbeispiel

- $R[k\Omega] = 5 V / I_out[mA] \times 1000$
- \_ Verwendung von E96 Widerständen
- \_ Widerstandstoleranz 1 %; Leistung 0.1 W; Basisisolierung erforderlich
- \_ Wird ein Widerstandswert außerhalb des spezifizierten Bereiches verwendet, so wird automatisch der Minimal-Strom (bei zu großem Widerstandswert) bzw. der Maximum-Strom (bei zu kleinem Widerstandwert) eingestellt

# Website

http://www.tridonic.com/28001110



### Bestelldaten

| Тур                       | Artikelnummer | Farbe | Kennzeichnung | Strom    | Widerstandswert | Verpackung Sack | Gewicht pro Stk. |
|---------------------------|---------------|-------|---------------|----------|-----------------|-----------------|------------------|
| I-SELECT 2 PLUG 350MA BL  | 28001110      | Blau  | 0350 mA       | 350 mA   | 14,30 kΩ        | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 375MA BL  | 28001111      | Blau  | 0375 mA       | 375 mA   | 13,30 kΩ        | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 400MA BL  | 28001112      | Blau  | 0400 mA       | 400 mA   | 12.40 kΩ        | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 425MA BL  | 28001251      | Blau  | 0425 mA       | 425 mA   | 11.80 kΩ        | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 450MA BL  | 28001113      | Blau  | 0450 mA       | 450 mA   | 11,00 kΩ        | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 475MA BL  | 28001252      | Blau  | 0475 mA       | 475 mA   | 10,50 kΩ        | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 500MA BL  | 28001114      | Blau  | 0500 mA       | 500 mA   | 10,00 kΩ        | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 525MA BL  | 28001960      | Blau  | 0525 mA       | 525 mA   | 9,53 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 550MA BL  | 28001115      | Blau  | 0550 mA       | 550 mA   | 9,09 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 600MA BL  | 28001116      | Blau  | 0600 mA       | 600 mA   | 8,25 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 650MA BL  | 28001117      | Blau  | 0650 mA       | 650 mA   | 7,68 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 700MA BL  | 28001118      | Blau  | 0700 mA       | 700 mA   | 7,15 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 750MA BL  | 28001119      | Blau  | 0750 mA       | 750 mA   | 6,65 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 800MA BL  | 28001120      | Blau  | 0800 mA       | 800 mA   | 6,19 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 850MA BL  | 28001121      | Blau  | 0850 mA       | 850 mA   | 5,90 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 900MA BL  | 28001122      | Blau  | 0900 mA       | 900 mA   | 5,62 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 950MA BL  | 28001123      | Blau  | 0950 mA       | 950 mA   | 5,23 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 1000MA BL | 28001124      | Blau  | 1000 mA       | 1.000 mA | 4,99 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG 1050MA BL | 28001125      | Blau  | 1050 mA       | 1.050 mA | 4,75 kΩ         | 10 Stk.         | 0,001 kg         |
| I-SELECT 2 PLUG MAX BL    | 28001099      | Blau  | MAX           | MAX      | 0,00 kΩ         | 10 Stk.         | 0,001 kg         |

### 1. Normen

EN 55015

EN 61000-3-2

EN 61000-3-3

E11 01000 5

EN 61347-1

EN 61347-2-13

EN 62384

EN 61547

EN 62386-101 (DALI-2)

EN 62386-102 (DALI-2)

EN 62386-207 (DALI-2, inkl. Teil 251, 252, 253)

Gemäß EN 50172 für Zentralbatterie<br/>anlagen geeignet

Gemäß EN 60598-2-22 für Notlichtinstallation geeignet

### Gehäuse erfüllt die Anforderungen für verstärkte Isolierung nach EN 60598-1.

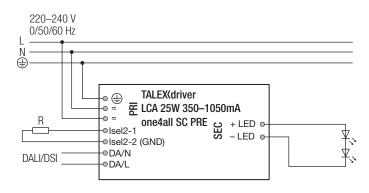
### 1.1 Glühdrahttest

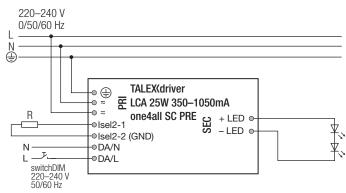
nach EN 61347-1 mit erhöhter Temperatur von 850 °C bestanden.

# 2. Thermische Angaben und Lebensdauer

### 2.1 Erwartete Lebensdauer

| Erwartete | I ahansdauar |
|-----------|--------------|


| El Wallele Ecbellsadael            |                  |               |             |             |          |          |
|------------------------------------|------------------|---------------|-------------|-------------|----------|----------|
| Тур                                | Ausgangsstrom    | gangsstrom ta |             | 50 °C       | 55 ℃     | 60 ℃     |
|                                    | 750 (00 4        | tc            | 60 °C       | 70 °C       | 75 °C    | ×        |
|                                    | 350 – 400 mA     | Lebensdauer   | > 100.000 h | 85.000 h    | 60.000 h | ×        |
|                                    | > 400 – 600 mA   | tc            | 65 ℃        | 70 °C       | 75 °C    | ×        |
| LCA 25W 350-1050mA one4all SC PRE  |                  | Lebensdauer   | > 100.000 h | 85.000 h    | 55.000 h | ×        |
| ECA 25W 550-1050MA ONE-Fall SCT RE |                  | tc            | 60 °C       | 65 °C       | 70 °C    | 75 °C    |
|                                    | > 600 – 850 mA   | Lebensdauer   | > 100.000 h | > 100.000 h | 75.000 h | 55.000 h |
|                                    | > 850 – 1.050 mA | tc            | 65 ℃        | 70 °C       | 75 °C    | ×        |
|                                    | > 650 - 1.050 MA | Lebensdauer   | > 100.000 h | 90.000 h    | 65.000 h | ×        |


Der LED-Treiber ist für die oben angegebene Lebensdauer ausgelegt, unter Nennbedingungen mit einer Ausfallwahrscheinlichkeit von kleiner 10 %.

Die Abhängigkeit des Punktes to von der Temperatur ta hängt auch vom Design der Leuchte ab. Liegt die gemessene Temperatur to etwa 5 K unter to max., sollte die Temperatur ta geprüft und schließlich die kritischen Bauteile (z.B. ELCAP) gemessen werden. Detaillierte Informationen auf Anfrage.

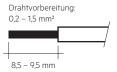
# 3. Installation / Verdrahtung

### 3.1 Anschlussdiagramm



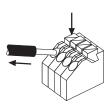


Verdrahtung für Dimmbetrieb mit ready2mains siehe ready2mains Gateway-Datenblatt.


### 3.2 Leitungsart und Leitungsquerschnitt

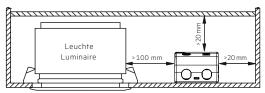
Zur Verdrahtung können Litzendraht mit Aderendhülsen oder Volldraht mit Leitungsquerschnitt von 0,2 bis 1,5 mm² verwendet werden.

Für perfekte Funktion der Steckklemme Leitungen 8,5–9,5 mm abisolieren. Nur einen Draht pro Anschlussklemme verwenden.


Nur ein Kabel pro Zugentlastungskanal verwenden.

### LED-Modul/LED-Treiber/Spannungsversorgung




### 3.3 Lösen der Klemmverdrahtung

Dazu den "Drücker" an der Klemme betätigen und den Draht nach vorne abziehen.



# 3.4 Einbaubedingungen bei Verwendung als unabhängiger Treiber mit Clip-On

Trocken; Säurefrei; Ölfrei; Fettfrei. Die am Gerät angegebene maximale Umgebungstemperatur (ta) darf nicht überschritten werden. Die unten angegebenen Mindestabstände sind Empfehlungen und von der eingesetzten Leuchte abhängig. Für die Montage direkt in der Ecke nicht geeignet.



### 3.5 Verdrahtungsrichtlinien

- Die sekundären Leitungen getrennt von den Netzanschlüssen und -leitungen führen, um ein gutes EMV-Verhalten zu erreichen.
- Die max. sekundäre Leitungslänge (LED Modul) beträgt 2 m (4 m Schleife).
- Für ein gutes EMV-Verhalten die LED-Verdrahtung so kurz wie möglich halten
- Zur Einhaltung der EMV Vorschriften sekundäre Leitungen (LED Modul) parallel führen.
- Sekundäres Schalten ist nicht zulässig.
- Der LED-Treiber besitzt keinen sekundärseitigen Verpolschutz. LED-Module, welche keinen Verpolschutz aufweisen, können bei Verpolung zerstört werden.
- Falsche Verdrahtung des LED-Treibers kann zu irreparablen Schäden führen und eine richtige Funktion ist nicht mehr gegeben.
- Um Geräteausfälle durch Masseschlüsse zu vermeiden, muss die Verdrahtung vor mechanischer Belastung mit scharfkantigen Metallteilen (z.B. Leitungsdurchführung, Leitungshalter, Metallraster, etc.) geschützt werden.

# 3.6 Anschließen des LED-Moduls im Betrieb

Anschließen des LED-Moduls während des Betriebs ist nicht zulässig, da eine Ausgangsspannung > 0 V anliegen kann.

Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird. Dies kann durch Aus- und Einschalten des LED-Betriebsgerätes sowie per DALI, DSI, switchDIM oder ready2mains erfolgen.

### 3.7 Erdanschluss

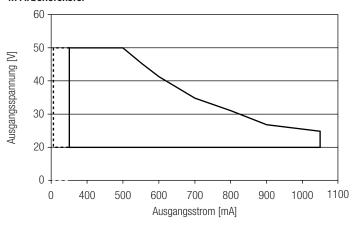
Der Erdanschluss ist als Schutzerde ausgeführt. Der LED-Treiber kann mittels Erdklemme geerdet werden. Wird der LED-Treiber geerdet, muss dies mit Schutzerde (PE) erfolgen. Für die Funktion des LED-Treibers ist keine Erdung notwendig. Zur Verbesserung von folgenden Verhalten wird ein Erdanschluss empfohlen:

- Funkstörung
- LED Restglimmen im Standby
- Übertragung von Netztransienten an den LED Ausgang

Generell ist es empfehlenswert bei Modulen, die auf geerdeten Leuchtenteilen bzw. Kühlkörpern montiert sind und dadurch eine hohe Kapazität gegenüber Erde darstellen, auch den LED-Treiber zu erden.

### 3.8 I-Select 2 Widerstände verbinden mittels Kabel

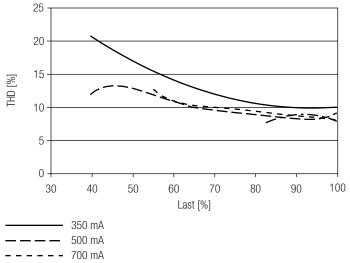
Für Details siehe:


http://www.tridonic.com/com/de/download/technical/LCA\_PRE\_LC\_EXC\_Produkthandbuch\_de.pdf.

### 3.9 Installationshinweis

Max. Drehmoment für die Befestigungsschrauben: 0,5 Nm / M4

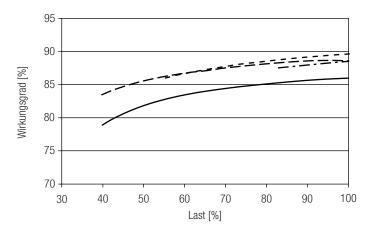
# 4. Elektr. Eigenschaften


# 4.1 Arbeitsfenster

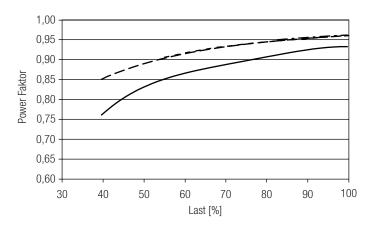


Arbeitsfenster 100 %
----- Arbeitsfenster gedimmt

Es ist sicherzustellen, dass der LED-Treiber ausschließlich innerhalb des gezeigten Arbeitsfensters betrieben wird. Besondere Aufmerksamkeit ist dem gedimmten Betrieb sowie dem DC- und Notlichtbetrieb zu widmen, da aufgrund der verwendeten Amplituden-Dimmung die Modulspannung mit dem Dimm-Level variiert. Eine Unterschreitung der spezifizierten minimalen Ausgangsspannung des LED-Treibers kann zur Abschaltung führen.
Siehe Abschnitt "6.11 Lichtlevel im DC-Betrieb" für mehr Informationen.


# 4.4 Verhältnis THD zu Last (ohne Oberwellen < 5 mA oder 0,6 % des Eingangsstromes)




100 % Last entsprechen der max. Ausgangsleistung (Volllast) gemäß der Tabelle auf Seite 2.

1050 mA

### 4.2 Verhältnis Effizienz zu Last



# 4.3 Verhältnis Power Faktor zu Last



### 4.5 Maximale Belastung von Leitungsschutzautomaten bezogen auf den Einschaltstrom

| Sicherungsautomat                 | C10                 | C13                 | C16                 | C20                 | B10                 | B13                 | B16                 | B20                 | Einsch           | naltstrom |
|-----------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------|-----------|
| Installation Ø                    | 1,5 mm <sup>2</sup> | 1,5 mm <sup>2</sup> | 2,5 mm <sup>2</sup> | 2,5 mm <sup>2</sup> | 1,5 mm <sup>2</sup> | 1,5 mm <sup>2</sup> | 2,5 mm <sup>2</sup> | 2,5 mm <sup>2</sup> | l <sub>max</sub> | Pulsdauer |
| LCA 25W 350-1050mA one4all SC PRE | 31                  | 43                  | 53                  | 66                  | 19                  | 26                  | 32                  | 40                  | 26 A             | 151 µs    |

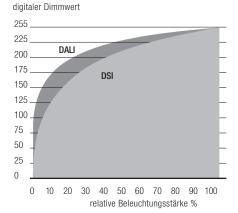
Dies sind max. Werte, die aus dem Einschaltstrom berechnet werden! Achten sie darauf, den max. Nenndauerstrom des Leitungsschutzautomaten nicht zu überschreiten. Kalkulation verwendet typische Werte der Leitungsschutzautomaten-Serie ABB S200 als Referenz.

Tatsächliche Werte können je nach verwendeten Leitungsschutzautomatentypen und der Installationsumgebung abweichen.

### 4.6 Oberwellengehalt des Netzstromes (bei 230 V / 50 Hz und Volllast) in %

|                                   | THD | 3.  | 5.  | 7.  | 9.  | 11. |
|-----------------------------------|-----|-----|-----|-----|-----|-----|
| LCA 25W 350-1050mA one4all SC PRE | < 8 | < 6 | < 3 | < 2 | < 2 | < 1 |

Gemäß 61000-3-2. Oberwellen < 5 mA oder < 0,6 % (welcher Wert auch immer größer ist) des Eingangsstromes werden nicht für die Berechnung vom THD berücksichtigt.


### 4.7 Dimmbetrieb

Dimmbereich 1% bis 100% Digitale Ansteuerung mittels:

- DSI-Signal: 8 Bit Manchester Code Maximale Dimmgeschwindigkeit 1% bis 100 % in 1,4 s
- DALI-Signal: 16 Bit Manchester Code Maximale Dimmgeschwindigkeit
   1% bis 100% in 0,2 s
   Die Programmierung des minimalen und maximalen Dimmlevels ist möglich Werkseinstellung Minimum = 1%
   Einstellbereich 1% ≤ MIN ≤ 100%
   Werkseinstellung Maximum = 100%
   Einstellbereich 100% ≥ MAX ≥ 1%

Der Augenempfindlichkeit angepasster Dimmverlauf. Das Dimmen wird mittels Amplituden-Dimming realisiert.

### 4.8 Dimmcharakteristik



Dimmcharakteristik entspricht der Sehempfindlichkeit des menschlichen Auges.

# 5. Schnittstellen / Kommunikation

# 5.1 Steuereingang (DA/N, DA/L)

An den Klemmen DA/N und DA/L kann wahlweise das digitale Steuersignal DALI oder ein Standardtaster (switchDIM) zur Ansteuerung angeschlossen werden.

Der Steuereingang ist verpolungssicher für digitale Steuersignale (DALI, DSI). Das Steuersignal ist keine SELV-Spannung. Die Installation der Steuerleitung ist entsprechend den Richtlinien für Niederspannung auszuführen. Die möglichen Funktionen sind vom jeweiligen Steuermodul abhängig.

### 5.2 Steuereingang ready2mains (L, N)

Das digitale Steuersignal ready2mains wird direkt auf die Netzspannung moduliert und an die Netzklemmen verdrahtet (L und N).

### 5.3 switchDIM

Die integrierte switchDIM-Funktion ermöglicht den direkten Anschluss eines Standard-Tasters zum Dimmen und Schalten. Ein kurzer Tastendruck (< 0,6 s) schaltet die angeschlossenen LED-Module ein bzw. aus. Der zuletzt eingestellte Dimmwert wird nach dem Einschalten wieder aufgerufen. Ein anhaltender Tastendruck dimmt die LED-Module solange der Taster gedrückt ist. Nach Loslassen und erneuter Betätigung ändert sich die Dimmrichtung.

Für den Fall, dass LED-Module auf unterschiedlichen Dimmwerten starten oder mit gegenläufiger Dimmrichtung arbeiten (z.B. nachträgliche Installation), können alle Geräte durch einen 10 s anhaltenden Tastendruck auf 50 % Dimmwert synchronisiert werden. Taster mit Glimmlampen dürfen nicht verwendet werden.

# switchDIM 2

Version 2 ermöglicht die Definition unterschiedlicher Fade-Zeiten für Anwendungen bei kurzem Tastendruck. Damit lassen sich Fade-Zeiten zum Einstellen des Memory-Levels (bei Aufwachen aus Standby) sowie Fade-Zeiten zum Ausschalten konfigurieren.

# 6. Funktionen

### 6.1 Funktion: Einstellbarer Strom

Der Ausgangsstrom des LED-Treibers kann in einem vorgegebenen Bereich eingestellt werden. Zur Einstellung stehen drei Optionen zur Verfügung.

Option 1: DALI

Die Konfiguration erfolgt mittels masterCONFIGURATOR (siehe masterCONFIGURATOR Dokumentation).

Option 2: I-SELECT 2

Die Stromeinstellung erfolgt über einen passenden I-SELECT 2 Widerstand, welcher in die I-SELECT 2 Klemmen eingesteckt wird.

Die mathematische Beziehung zwischen Ausgangsstrom und Widerstandswert wird in der Produktbeschreibung "Zubehör I-SELECT 2 PLUG" erläutert.



Bitte beachten Sie, dass die Widerstandswerte für I-SELECT 2 nicht mit I-SELECT 1 kompatibel sind. Aus der Installation eines falschen Widerstands können möglicherweise irreparable Schäden an den LED-Modulen entstehen.

Widerstände für die wichtigsten Ausgangsstromwerte können von Tridonic bezogen werden (siehe Zubehör).

Option 3: ready2mains

Die Konfiguration erfolgt mittels optionalem Programmer und der entsprechenden Konfigurationssoftware über die ready2mains Schnittstelle.

DALI wird bei der Stromeinstellung vorrangig behandelt, gefolgt von I-Select 2 und ready2mains.

### 6.2 ready2mains - Konfiguration

Die Hauptparameter von LED-Treibern, wie LED-Ausgangsstrom, CLO und DC-Level, können mithilfe der ready2mains Schnittstelle über die Netzverdrahtung konfiguriert werden.

Dabei können die Parameter entweder über ready2mains-fähige Konfigurationssoftware oder direkt über den ready2mains Programmer eingestellt werden (nur Ausgangsstrom).

### 6.3 ready2mains - Dimming

ready2mains ermöglicht das Dimmen von Gruppen über die Netzverdrahtung, welches über das ready2mains Protokoll und entsprechende Dimming-Schnittstellen (Gateways) gesteuert wird.

Weitere Details zur Bedienung von ready2mains und dessen Komponenten finden Sie in den entsprechenden technischen Informationen.

### 6.4 Verhalten bei Kurzschluss

Bei Kurzschluss am LED-Ausgang wird dieser abgeschaltet. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface (DALI, DSI, switchDIM, ready2mains) erfolgen.

### 6.5 Verhalten bei Leerlauf

Der LED-Treiber nimmt im Leerlauf keinen Schaden. Der LED-Ausgang wird deaktiviert und ist somit spannungsfrei. Wird eine LED-Last angeschlossen, muss das Gerät zuerst neu gestartet werden, bevor der LED-Ausgang aktiviert wird

### 6.6 Überlastschutz

Wird die maximale Last um einen definierten internen Grenzwert überschritten, schaltet der LED-Treiber den LED-Ausgang ab. Erst nach einem Neustart des Geräts wird der LED-Ausgang wieder aktiviert. Der Neustart kann entweder über Netzreset oder über das Interface (DALI, DSI, switchDIM, ready2mains) erfolgen.

### 6.7 Übertemperaturschutz

Um den LED-Treiber vor kurzzeitiger thermischer Überlastung zu schützen, wird bei Überschreitung der Grenztemperatur der Ausgangsstrom der LED reduziert. Der Temperaturschutz wird über tc max. aktiviert. Die Aktivierungstemperatur variiert in Abhängigkeit von der LED-Last. Im DC-Betrieb ist diese Funktion deaktiviert, um die Notlichtanforderung zu erfüllen.

### 6.8 corridorFUNCTION

Die corridorFUNCTION kann auf zwei verschiedene Arten programmiert werden. Um die corridorFUNCTION mittels Software zu programmieren, ist ein DALI-USB-Interface in Kombination mit einer DALI PS notwendig. Als Software kann der masterCONFIGURATOR verwendet werden. Um die corridorFUNCTION auch ohne Software zu aktivieren, muss lediglich eine Spannung von 230 V für 5 min. am switchDIM-Anschluss anliegen. Danach geht das Gerät automatisch in die corridorFUNCTION.

### Hinweis:

Sollte die corridorFUNCTION in einer switchDIM-Anlage fälschlicherweise aktiviert werden (z.B. ein Schalter wurde anstelle eines Tasters verwendet), so besteht die Möglichkeit nach korrekter Installation eines Tasters den corridorFUNCTION-Modus mittels 5 kurzer Tastendrücke innerhalb von 3 Sekunden wieder zu deaktivieren.

switchDIM und corridorFUNCTION sind sehr einfache Arten ein Gerät mittels handelsüblichen Tastern oder Bewegungsmeldern zu steuern. Für eine einwandfreie Funktion ist das Gerät jedoch auf eine sinusförmige Netzspannung mit einer Frequenz von 50 Hz oder 60 Hz am Steuereingang angewiesen. Besonderes Augenmerk ist auf klare, eindeutige Nulldurchgänge zu legen. Starke Netzstörungen können dazu führen, dass auch die Funktionen von switchDIM und corridorFUNCTION gestört werden.

### 6.9 Konstantlicht

CLO - Constant Light Output Funktion

Der Lichtstrom einer LED nimmt über ihre Lebensdauer kontinuierlich ab. Die Funktion CLO stellt sicher, dass die abgegebene Lichtmenge trotzdem stabil gleich bleibt. Dazu wird der LED-Strom im Laufe der LED-Lebensdauer kontinuierlich erhöht. Über den masterCONFIGURATOR können Startwert (in Prozent) und zu erwartende Lebensdauer definiert werden. Der LED-Treiber passt den LED-Strom anschließend automatisch an.

### 6.10 Power-up/-down Fading

Die Power-up/-down Fading Funktion bietet die Möglichkeit das Ein- und Ausschalt-Verhalten anzupassen. So lässt sich das Fading während des Einbzw. Ausschaltens über einen Zeitraum von 0,2 bis 16 Sekunden variabel einstellen. Dabei dimmt das Gerät in der eingestellten Zeit von 0 % auf den Power-On Level oder vom aktuell eingestellten Dimm-Level auf 0 %. Dies gilt sowohl für den Betrieb mittels switchDIM und ready2mains, wie auch bei Ein- und Ausschalten der Versorgungsspannung. Ab Werk in kein Fading (= 0 Sekunden) eingestellt.

### 6.11 Lichtlevel im DC-Betrieb

Der LED-Treiber ist für den Betrieb an DC-Spannung und gepulster DC-Spannung ausgelegt. Für einen zuverlässigen Betrieb ist sicherzustellen, dass der LED-Treiber auch im DC- und Notlichtbetrieb innerhalb des in Kapitel "4.1 Arbeitsfenster" spezifizierten Bereiches betrieben wird.

Lichtlevel im DC-Betrieb: programmierbar 1 – 100 % (EOF<sub>i</sub> = 0,13) Programmierung mit DALI oder ready2mains. Im DC-Betrieb kann auch der Dimmbetrieb aktiviert werden.

Der spannungsabhängige Eingangsstrom des Betriebsgerätes inkl. LED-Modul hängt von der angeschlossenen Last ab.

Der spannungsabhängige Leerlaufstrom des Betriebsgerätes (ohne oder mit defektem LED-Modul) ist für:

AC: < 12,4 mA DC: < 4.5 mA

# 6.12 Intelligent Voltage Guard

Intelligent Voltage Guard ist die Bezeichnung für die elektronische Überwachung der Netzspannung. Er zeigt sofort an, wenn die Netzspannung über einen bestimmten Schwellenwert ansteigt. Es können dann schnell Maßnahmen ergriffen werden, um Schäden am LED-Driver zu verhindern.

- Wird ein Netzspannungswert von ca. 280 Vrms (Spannung hängt vom LED-Driver ab) überschritten, fangen die LED-Leuchten an zu blinken.
- Um eine Beschädigung des LED-Drivers zu vermeiden, muss bei diesem Signal die Netzversorgung abgeschaltet werden.

#### 6.13 fade2zero

Beim Ausschalten des Treibers ermöglicht fade2zero ein sanftes Herunterdimmen bis fast null.

Die fade2zero Funktion beim Programmieren mittels companionSUITE aktivieren und eine DALI-Fade-Zeit einstellen. fade2zero funktioniert nur, wenn der minimale Dimmlevel des Treibers der Standardwert ist. Das Gerät dimmt dann bis weit unter die Grenze seines Arbeitsfensters (Dimmbereichs).

Diese Funktion ist standardmäßig deaktiviert.

### 6.14 Software / Programmierung

Mittels Software und USB-Interface können verschiedene Funktionen aktiviert bzw. Parameter konfiguriert werden.

Hierzu ist lediglich ein DALI-USB oder ready2mains Programmer, sowie die Software (masterCONFIGURATOR) notwendig.

### 6.15 masterCONFIGURATOR

Ab Version 2.8:

Zum Programmieren von Funktionen (CLO, I-SELECT 2, Power-up Fading, corridorFUNCTION) und der Gerätekonfiguration (Fadetime, ePowerOnLevel, DC-Level etc.).

Weitere Informationen finden Sie im masterCONFIGURATOR Handbuch.

### 6.16 deviceCONFIGURATOR

PC-basierte (Windows) Software-Anwendung für die Übertragung von Parametern auf unsere Treiber.

Optimierter Workflow für den Einsatz in der OEM-Produktionslinie. Weitere Informationen finden Sie im deviceCONFIGURATOR Handbuch.

### 7. Sonstiges

### 7.1 Isolations- bzw. Spannungsfestigkeitsprüfung von Leuchten

Elektronische Betriebsgeräte für Leuchtmittel sind empfindlich gegenüber hohen Spannungen. Bei der Stückprüfung der Leuchte in der Fertigung muss dies berücksichtigt werden.

Gemäß IEC 60598-1 Anhang Q (nur informativ!) bzw. ENEC 303-Annex A sollte jede ausgelieferte Leuchte einer Isolationsprüfung mit 500 V  $_{DC}$  während 1 Sekunde unterzogen werden.

Diese Prüfspannung wird zwischen den miteinander verbundenen Klemmen von Phase und Neutralleiter und der Schutzleiteranschlussklemme angelegt. Der Isolationswiderstand muss dabei mindestens  $2\,\mathrm{M}\Omega$  betragen.

Alternativ zur Isolationswiderstandsmessung beschreibt IEC 60598-1 Anhang Q auch eine Spannungsfestigkeitsprüfung mit 1500 V  $_{AC}$  (oder 1,414 x 1500 V  $_{DC}$ ). Um eine Beschädigung von elektronischen Betriebsgeräten zu vermeiden, wird von dieser Spannungsfestigkeitsprüfung jedoch dringendst abgeraten.

# 7.2 Bedingungen für Lagerung und Betrieb

Luftfeuchtigkeit: 5% bis max. 85%,

nicht kondensierend (max. 56 Tage/Jahr bei 85 %)

Lagertemperatur: -40 °C bis max. +80 °C

Bevor die Geräte in Betrieb genommen werden, müssen sie sich wieder innerhalb des spezifizierten Temperaturbereiches (ta) befinden.

Der LED-Treiber ist ein Einbau-Betriebsgerät und damit für die Verwendung in Leuchten bestimmt.

Wird das Produkt außerhalb einer Leuchte verwendet, muss in der Installation ein geeigneter Schutz von Personen und Umgebung vorgesehen werden (z.B. bei Lichtdecken)

# 7.3 Maximale Anzahl an Schaltzyklen

Alle LED-Treiber werden mit 50.000 Schaltzyklen geprüft. Die tatsächlich erreichbare Anzahl Schaltzyklen liegt signifikant höher.

# 7.4 Zusätzliche Informationen

Weitere technische Informationen auf <u>www.tridonic.com</u> → Technische Daten

Lebensdauerangaben sind informativ und stellen keinen Garantieanspruch

Keine Garantie wenn das Gerät geöffnet wurde!